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Abstract—Laminar film boiling is studied as an example to demonstrate the advantages of the asymptotic

approach to rather complex two-phase flow and heat transfer problems. Introducing two perturbation

parameters for superheating and subcooling, respectively, a regular perturbation solution with only

two solution parameters is derived. The effects of variable properties are included asymptotically. Non-

asymptotic solutions are far less general since even for constant properties it is a six-parameter problem
which allows for specific solutions only.

1. INTRODUCTION

ANALYTICAL studies of laminar film boiling date back
to an early study by Bromley [1] in 1950. Assuming a
linear temperature distribution in the vapour film this
study was based on a modification of the Nusselt
water-film theory. About 10 years later considerable
improvement was achieved by introducing the concept
of a two-phase boundary layer, see, e.g. studies by
Sparrow and Cess [2], Nishikawa and Ito [3] and
Frederking and Hopenfeld [4]. Though nearly all
studies point out that the influence of variable proper-
ties might be very important for that kind of flow
only a few of them account for the temperature depen-
dence of the physical properties involved. McFadden
and Grosh [5] account for variable density and specific
heat for a flow situation near the critical pressure. A
study assuming all properties to vary with tem-
perature (expressed by a power series representation)
has been published by Marschall and Moresco [6].

In the present study laminar stable two-phase
boundary layer flow on a vertical plate is investigated.
The surface of the plate is heated above the saturation
temperature of the surrounding liquid. In general the
liquid is subcooled including the special limit of zero
subcooling or saturation.

In reality this flow situation holds close to the lead-
ing edge of the plate. In regions further downstream
where deformations of the interface by waves and
instabilities arise, the present analysis may provide the
basic flow for stability considerations.

The objective of the present study is a more
systematic approach to the problem. The application
of a reguiar perturbation technique provides more
general results as well as better physical insight into
the problem. Based on this asymptotic approach the
influence of the various temperature-dependent prop-
erties is revealed clearly. In addition to this, well-
known variable property concepts like the ‘reference
temperature’—and ‘property- ratio’-—method can be
adopted to this flow situation.

Compared to the treatment of a one-phase natural
convection boundary layer, see, e.g. ref. [7], two
additional complications arise. The interface location
and conditions must be expressed asymptotically;
and—as a consequence of this—a series expansion of
the vapour boundary layer is required in addition to
the expansion accounting for variable property
effects.

2. ANALYSIS

The two-phase boundary layer flow, according to
Fig. 1, is described by the following set of conservation
equations. All starred quantities are dimensional,
quantities in the liquid phase are marked with a cir-
cumflex <7 :

continuity

0 0
o (pu¥)+ b—};(p*v*) =0 (1a)
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FiG. 1. Two-phase boundary layer.
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NOMENCLATURE
C density ratio, p¥/p* Greek symbols
¢ specific heat at constant pressure o physical property
f dimensionless streamfunction g overheating parameter, equation (12a)
g acceleration of gravity é subcooling parameter, equation (12b)
Gr Grashof number n similarity variable
h latent heat 0 dimensionless temperature
H latent heat, Table 2 A thermal conductivity
Jj reference temperature factor U viscosity
K, property of the fluid, equation (40) p density
K., K, constants, equations (29) T shear stress
m mass flux ¥ streamfunction.
n, property ratio exponent
Nu Nusselt number
Pr Prandtl number Subscripts
q heat flux o associated with the property a(p,7,...)
R Reynolds number cp constant properties
T temperature IF interface
u,v  velocity components ] saturation
U reference velocity w wall
x,y  coordinates. 0 infinity.
i+ ——(ﬁ*v*) = (1b) T* =T ©)
(no temperature jump)
X-momentum T*=T* (10)
ou* ou* 0 u* aT* . oT* m*
p* (u* F +ov* 5;;) = a——( gy )+g*(pw —p*) * i A¥ %)T}* - —Z—l;h* (energy conservation).

(2a)

(a2 ar ) - 2,
%

<ﬁ*9‘f>+g*(ﬁ* Ak

(2b)

thermal energy (viscous heating and axial conduction
neglected)
aT* oT* ) oT*
* w0 Vo gkl
g c"(“ o ay*) oy* <'1 6y*> G2
oT*

F oT™* d T+
skl o7 o7 VY Tx .
cp(u e TO 6y*> e (/f 6y*> (3b)
The associated boundary conditions are
pr=0: u*=v*=T*-Tr=0 @
yro o @*=T*—T% =0, (5)

In addition to the five boundary conditions another
six conditions hold at the (unknown) interface posi-
tion y¥%, for details see, e.g. ref. [6]

AN

u* = 4* (no-slip velocity) (6)
* 7%
u* ZyL* = fi* —u—* (balance of forces) )

(mass conservation) (8)

(1
By equations (4)—(11) eleven conditions are provided,
ten boundary conditions for equations (1)-(3) and
one condition to determine yf. The interface is
assumed to be at the saturation state determined by
the saturation temperature 7 at the total pressure p*.
A regular two-parameter perturbation analysis is
now applied to the system of equations (1)—(11). Since
the two-phase flow under consideration is induced by
overheating the fluid the rate of overheating is chosen
as one perturbation parameter

Ti-T¢
T?

&= (overheating parameter). (12a)
In addition there is a modification of the two-phase
flow by the degree of subcooling, so that the second

perturbation parameter is defined as

T - T*

£ = (subcooling parameter). (12b)

The following asymptotic theory holds for e » 0, £~ 0
but it will turn out that reasonable approximations
for finite ¢ and & will be achieved even if only the
first (linear) term of the asymptotic expansion is
considered. A five-step procedure will be applied in
Sections 2.1-2.5. For a general description of the five
steps see, e.g. ref. [8] or ref. [9].
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Table 1. Non-dimensional quantities
x »y u, il 0,8 R 6,6 ad
¥ L A YR Lt Y z
x* I+ U UF pFUL* T3-T? ot
L* Y — Yo Y*=¥ho gus a* o* fon lﬁ*R 12 f* — T f?:
BV os O prO*L* —T* ax
a=p, l“’ CZ - P, .u»
R=(p}U “L"/#s*) = (5*U*L*f#s‘) Pr=(uXch/Ad); Pr = (aXcp/A®).
2.1. Non-dimensional basic equations, similarity trans- thermal energy
Jormation Y+ 3Pre, {6 =0 17a
Since there is no characteristic geometrical length o201 7 S (172)
in the problem under consideration the flow exhibits (A6 +3Pré, 76 = 0; (17b)
self-similar behaviour. Equations (1)-(3) .therefo.re with the associated boundary conditions
can be transformed to a set of ordinary differential
equations. n=0: f=f=0-1=0 (18)
(1) Nondimensionalization, using an arbitrary foo: fr=0-1=0 19

reference length L*, reference velocities U* and U,
and T* as reference temperature. All physical prop-
erties are nondimensionalized by their values at T
For details see Table 1.

(2) Applying the following similarity trans-
formations: (x, y) — (x,, n) and (x, §) - (x,, #)

x, = x (13)
¥
n=2"Yx" ‘“s"‘f pdy (14a)
0
2
f= Z“I/Zx_”dj; pdy. (14b)

(3) Introducing the streamfunctions ¢ and ¢ and
their self-similar counterpart f and f

2

%—f; —ou. X e o,y =220 ) (159)
o a -

5‘% = i, g; = —pb, §=2J2x¥F(H). (15b)

Equations (13)—(15) are those frequently used in two-
phase self-similar flows, but with two additional
features. In equations (14) a density weighted normal
coordinate is introduced for convenience. In equa-
tions (l4a) and (15a) the vapour quantities are
stretched by a power of & The reason for this
additional transformation arises from the different
structure of the buoyancy terms in the liquid and
the vapour phases. The exponent n will be evaluated
by physical considerations.

With the buoyancy terms named BT and BTL,
respectively, equations (1)—(3) now read:

X-momentum

louf"V+e”[3ff"—=2f*+BT} =0  (16a)
PAfY +377"~2f " +BTL=0;  (16b)

and the conditions at the (unknown) interface posi-
tion #;x listed at the end of this section.

The buoyancy terms describing the driving mech-
anism of the flow actually are the key to asymptotic
formulation of the whole problem. They read with the
driving density ratio C = p%/p¥

g*L*

BT =5y

* J %
e co ' -1=2 (C-1+00)

(20a)

BTL = *——[émﬁ“

R (pab™ '~ =2 (R 0~ 0)+ 0@

(20b)

Since one is looking for an asymptotic solution for
£-»0, £—0, p and § in equations (20) have been
replaced by their Taylor series expansions at the
reference temperature T¥

p=1+¢K,0+0(E%
p=1+EK,0+0(8%
with the following definitions :

T* 8 5 T* op*
k=[5Z] #-|Fm] @
These values are dimensionless fluid properties like
the Prandtl numbers Pr and Pr.

The constant property solution in the limit ¢ — 0 is
assumed to be the zero-order or basic solution for the
perturbation approach. Compared to the single phase
natural convection flow this is a completely different
approach. For a single phase flow the zero-order solu-
tion is a variable property solution already (known as
the Boussinesq approximation, for details see ref. [7]).
For two-phase flows a finite buoyancy term is left in
the momentum equation of the vapour phase, see
equation (2a), even in the limit of constant properties.

(2la)
(21b)



2016

There is still the large difference in density between
the vapour and liquid phases.

From equation (20a) the reference velocity of the
vapour phase is determined. In order to keep the
buoyancy term in the zero-order equations, for U* to
hold, see equation (16a)

U*[g*LX(C—D)]™"* = O(&"). (23)

At this stage of the investigation it is not obvious what
fixes the unknown exponent a. It turns out that
this is done by the energy balance at the interface,
equation (11). To zero order it reads (0, zero order:
H=h*ciTY)

04+ 3Pr Hf e ' = 0. (24)

Since both terms in equation (24) must be kept in the
equation (the latent heat produced at the interface is
balanced by the heat conduction to the vapour face)
one obtains

2n--1 1
>

& = n=1/2. (25)

With n = 1/2 the reference velocity of the vapour
phase is (with a possible order one constant equal to
one)

U* = J(g*L*(C—1)e). (26)

Within the zero-order solution (constant properties)
there are no free convection currents in the liquid. But
nevertheless there is a liquid boundary layer since
the no-slip condition provides a non-zero boundary
condition to the otherwise homogeneous equation
(2b) (note: p¥ — p* = 0 in equation (2b) within zero
order). As a consequence of this the reference velocity
in the liquid phase must be of the same order of
magnitude as U*. To avoid another O(1) constant,

one sets
U* = U*. (27

Equations (16) with BT and BTL according to equa-
tions (20)—(26) now read

lowf"Y +14+e3ff" ~2f*~ K01+ 0(e*) = 0 (28a)

mﬂw+ﬁﬂ—y”+§&a—m+063=o

with

(29)

In equation (28b) the buoyancy term of O(éfe)
describes the free convection currents in the liquid
which are one of several variable property effects. By
assuming the constant property case for ¢ — 0 to be
the zero-order solution the free convection currents
as a consequence of this assumption are the only first-
order effect in equation (28b). A necessary condition
imposed by the zero-order assumption is O(£) =
O(g™ with m> 1. For m=1 the free convec-
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tion currents would be a zero-order effect (which is
discussed briefly later). Any number m > 1 is possible
since ¢ and ¢ are not related to one another by a
physical condition that would allow for one com-
bination only. But nevertheless there is a first choice

m=2 0@)=0(. i=Pe.  (30)

Analysing the whole problem incorporating equations
(30) allows for a minimum number of expansion terms
as will be seen hereafter. Furthermore, the well-estab-
lished hierarchy of variable property effects is pre-
served (see, e.g. ref. [7]) : the (variable property) buoy-
ancy term in equation (28b) is one order of magnitude
larger than the effect of variable viscosity for example.
An analysis based on equations (30) seems reasonable
for practical purposes since in most applications
¢ is much larger than £ numerically. For example
T¥—T*¥=100 K, T*~T* =30 K and T¥=370 K
results in & = 0.27, § = 0.08 with ¢ = 0.073.

The complete set of basic equations needed for a
linear asymptotic analysis reads

louf "l +1+el3ff" =2~ K,0]+0(e) =0 (31a)
ﬁ+ﬁﬁ—ﬁmfkm~mﬂmm=0(mm
[pA0] +63Pr f8 +0(e) = 0 (32a)
0" +3Pr fO" +o(éje) = 0 (32b)

with boundary conditions (18) and (19). The symbol
o(...) means asymptotically smaller than the order
indicated.

It should be mentioned that a basically different
approach is possible by assuming a zero-order
solution that incorporates the liquid currents.
This results in an analysis assuming ¢ — 0, £ -0,
(8/e) = P, = O(1). The appropriate reference velocity
in the liquid would be U* = /(¢*L*K,é) and all
terms of O(£) in equations (31b) and (32b) would turn
out to be first-order terms. In terms of this approach
the present analysis is that for P, — 0 with P, = O(g).

The interfacial conditions, equations (6)—(11), read
(constants listed in Table 2)

f=7 (33)
fr=fCet? (34)
Cie'*f=7 (35)
6=0 (36)
0=40 (37

Table 2. Constants

O Lk Axf prux
(jl - \/<&*if\\*> Cv} B 7;\/<P*If;>
[k XN \pi
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0 +3Pr fH = 0/Cye"? g (38)

2.2, Perturbation expansions for all dependent variables
and the interface location

It is the aim of this study to find a solution that
includes all effects of O(g) and O(é/¢) in a way that is
as general as possible. The first step to accomplish this
is a Taylor series expansion of all properties involved.
These are @ = py, pi (note that ¢, is multiplied by ¢
in equation (17a) and no longer appears in equation
(32a)) at the vapour side

a=1+eK,0+0() (39)
with
T* Do*
K, = {;;*a‘ﬁls &% = pu, pA. (40)

The influences of all corresponding properties 4 at the
liquid side are of O(&) = O(e?) neglected in this study
as higher order terms. Altogether there are three
sources of pon-zero order terms that should be
accounted for in a general perturbation formula:

(a) terms induced by powers of the perturbation
parameters in the equations or boundary conditions
that hold even for constant property flows (all values
of K equal to zero); these are terms of O(¢"?) and
O

(b) terms accounting for variable property effects
in the vapour layer; these are terms of O(K,¢) and
0(K.8);

(c) terms accounting for variable property effects in
the liquid layer; this is only one term of O(K,é/e).

Accordingly the perturbation expansions for f and f
read with the constants C,, C, and the values of K
arranged properly in order to minimize the parameters
of the final equations

= fo+e'?C fi+elCl 2+ CiCoffs +far + Pr fur]
+a[1<,‘ S +;Km ﬁ,]+ fz&,, fi+0EYH @)

F=Ffote2C f1 +e[CI 4+ CiCofs +fa1 + Pr fa3)
+5[KA Fa +§ K, f;]+ gx‘:., Ffi+0E"D. (1)

Similar expansions hold for the temperatures

0 =0,+8"2C0,+e[C30,4+C,Co0,+04,+ Pro,,)
+£[KA@A +ZKa9a]+ 2 K, 0;+0E") (43)

G=0,+c72C0,+e[C3,+C,Cof,+0,, +Priy,]
+8|:K40A+§:Kaéa]+él%,,é,;+0(s3/2). (44)

The location of the interface n, and #y5, respectively,
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is not known in advance. It is part of the solution and
it is subject to the influence of non-zero order terms
like all other quantities. Therefore a similar expansion
holds for n

e = thiro +&2C e +6[Cimpr + C1 Cothigs + hpar

+ Prifea]+ 8[KA Mra+) Ka”IF;]

é .
+ : K i+ OE"?). 45)

The relation between n; and #y is (C, according to
Table 2)

fire = &"2C, (e — thiro) + O (6¥?). (46)
2.3. Zero- and first-order equations and their solutions

Inserting equations (39) and (41)(44) into the basic
equations, equations (31) and (32), and equating
terms of equal magnitude Cg/(i=1,2,...; j=0,
1/2,1,...) results in a hierarchy of sets of ordinary
differential equations. The corresponding boundary
conditions are easily derived from equations (18)
and (19).

Special attention has to be given to the interfacial
conditions, equations (33)-(38). A Taylor series
expansion at the zero-order location is required to
derive the higher order interfacial conditions. The
first condition, equation (33), for example reads
asymptotically (not all terms written down explicitly)

Fo(o) +1 (o) {e"> Citpry +6(Cimea+- )}
+3/5(mo){eCinies + -} +e2Ci[ 11 (10)
+f o) {e*Citrer + - J1+el. . ]

=fo0i0) +/5(o{eC1 ot ++ -}
+e2C fi+el.. ]

The overall procedure results in the following equa-
tions, boundary conditions and interfacial conditions,

respectively.
2.3.1. Zero order ; basic solution.

So+1=0 (47a)
o'+ 3ol t—2/7 =0 (47b)
85=10 (48a)
G143Pr foffy =0 (48b)

boundary conditions
N=0: fo=fo=0—~1=0 (49)
f—oow: fro=0—1=0; (50)

interfacial conditions
fo=1% (51
So=0 (52)
0=7, (53)
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0,=0 (54) Table 3. Numerical results. All quantities 8}, /% and #,
0—d (55) not included in this table are zero
= Uy e E———————
. PrH i 5
0%+ 3Pr Hfy = 0. 0 , c o
1/2 05w —-1.0 —1.495349 —1.778278
23.2.0(Cie™). @iz —0.1 —0.029907 -0.017783
=0 (57a) 0. 0.5 0747674 0.889138
P PP P P P pr Sow 1.0 0.668740 0.562341
U3 ST HN TN -4 S =0 (5Tb) . —0.272407  —0.081624  —0.048676
"o S 0.166731 0.022397 0.009476
07 =0 (38a) i —0.091665  —0.012260  —0.005155
0" L3P 70 4761 =0 53b T —0.091667  —0.012260  —0.005155
(43P fol /160 (58b) I ~0.375 0250778 —0.210878
boundary conditions Soion —-0.75 —0.501555  —0.421756
. " 0.16667 0.111457 0.093723
n=0: fi=fi=0,=0 9 v 1.0 0.668740  0.562341
. A vt 0.272407 0.081624 0.048676
iz Ji=0i=0; (60) M2 —0.018319 —0.002471 —0.001051
interfacial conditions (at § = #yx) Herar 0.075003 0.010032 0.004218
7 s —0.091667  —0.012260  —0.005155
Lo +17 = f4 (61) My 0.125 0.083593 0.070293
. N MiFpu 0.25 0.167185 0.140585
JSme 1 =1% (62) Hikps 0.16667 0.111457 0.093723
fo=1 (63)
0, =0 (64) Nusselt [10] for water films which thus turn out to be
. the leading terms of an asymptotic theory.
0=0, (65) All non-zero equations have to be solved numeri-
sthi 20 o2 ,
O + 0+ 3Pr H L ottees +11) = 0. (66) cally. Within each order (¢"*C,, ¢C4,...) the vapour

It turns out that most of the non-zero order equations
and their boundary and interfacial conditions are of
a similar type which also holds for equations (57)-
(66) above. In the Appendix all equations are listed
by means of a general set of equations and the cor-
responding exceptions.

Altogether there are 11 sets of equations (four
differential equations per set) with 11 boundary and
interfacial conditions per set. The whole system has
two parameters left (with only the first one being
relevant as will be demonstrated afterwards)

PrH
br.
It should be pointed out that the system treated in a
non-asymptotic manner has six parameters even
in the special case of constant properties, see, €.g.
ref. [3].

The zero-order vapour equations can be solved
analytically since interfacial conditions (51)~(56) let
them be decoupled from the liquid phase. The solu-
tions are

fo= ="+ mron’ (67)
0o = 1—n/Mmgo (68)

with the zero-order interface position given by
Mo = (PrH)” V4. (69)

By means of equation (68) the zero-order heat
transfer result can be given analytically as will be
demonstrated in the next section.

The velocity and temperature distributions, equa-
tions (67) and (68), are those of the early theory of

and liquid equations are coupled by the unknown
interface parameter #;5,. This unknown parameter as
well as all initially unknown wall boundary conditions
needed for a numerical integration (Runge—Kutta) of
the equations are determined by a standard ‘shooting
method’.

Beforehand a careful inspection of all equations
and boundary conditions reveals the following points.

(1) That a considerable number of equations have
the trivial solution only. That they hold for all vapour
equations of 0(eC?), O(:K) and O(sK,) and ali
vapour energy equations except O(1), O(e Pr) and
O(eK,)). i

(2) That the liquid Prandtl number Pr does not
affect the wall values of zero and first order, so that
the whole problem is left as a one-parameter problem
within the linear theory of this study.

This one and only parameter is Pr H. In Table 3
the numerical results are displayed for three different
values of this parameter. Three quantities are given:
0’ [ and Mg,

2.4. Skin friction and heat transfer results
The momentum transfer results in terms of the skin
friction ¢; = 2t¥/p*U*? are

el = 2\/2 Grl,’4xl/’4[f0rr+8l,'2clf.l//
+e(CHf 5+ C Cof s+ + Prfe)
+e(Kaf 4+ Kpu(f o+ 00

K+ R vow oo
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with Grashof number

* 7 %3

Gr=R*=>—/—¢&(C-1).

(7
The heat transfer results in terms of the Nusselt
number
Nu=geL*[AX(TE-T})
are
Nugh? == w2-V2GrY4 x= V40, +62C 0
+8(CH0,+C,Co05+ 84, + Priy,) +e(K, 8,

Ko Byt K@ +0,0) + =R 83+06")  (72)

with the zero-order result

Nug'* = 272 Gril* x~V4(PrHY*.  (13)

From equations (70) and (72) correction formulae
to account for the influence of variable properties
can be derived. With the constant property case
characterized by K, =O0(i=pu, pi, A) and
S = 04, = 8,,, = 8%, = Othe following ratios hold
asymptotically :

oty KR Z‘“’)
e

+K,,;f ':,“']+0(sm) (74)
Jow
Nu - gp;.“,. 32
Nmucp 1+aK,1( aaw)%»()(s ). {75)

It should be pointed out that the zero-order solution
is the constant property case in the limit of vanishing
heat transfer (¢-»0). That is why ratios like cycr
(instead of ¢jcy.) would have terms of O(s"/%).

2.5. Reference temperature and property ratio for-
mulation

In the heat transfer literature there are two empiri-
cal methods to account for variable property effects:
the reference temperature and the property ratio
method. The empirical constants in both methods can
be deduced analytically by the asymptotic approach
of this study.

2.5.1. Reference temperature method. In this method
a temperature T, (reference temperature) is specified
at which the properties appearing in the dimensionless
groups of the problem should be evaluated to get the
variable property results by constant property for-
mulae. Defining

T=Tr+jTE-TY) (76}
it is the factor / that has to be determined. The starting
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point is the constant property formula which for the
heat transfer reads (see equation (72) and Table 3)
Nu, = —(26)~2x~ V4 Gr; V0, (Pr H,)

+&Pr. Oux(Pr H)ly = Nu{Gr,, PrH, Pr}. (17

The index ‘s’ means all properties in the dimensionless

grouns are avaliated at ‘T’* = T* The same formula
Eroups are eva:uawl ac s 44C S3IME IorMmuUa

with all properties at 7* = T* describes the variable
property Nusselt number Ny, so that the ratic Nu/Nu,,

reads
Nu__ [4[6r ]
Nug, ~ | 221 Gr,)

ow(Pr H) +&Pr. 84, (PrH)
0%, (PrH)+&Pr, 0, (PrH)
= l+g I%(Kp ~K )+ K+ F(PrH)K, ] {78)
with
PrH d6%,
F(PrH) = [ 3B H:L 79

and Kp iy = K’,-Kb Kp,
(40).

Inserting #, according to equations (68) and
(69) into equation (79) one obtains F(PrH) = 1/4 =
const. which leads to the final result

Nu 1 i 3
— = H-.y[ K —Z,‘Kﬁ%- EX"‘}

K,, K, according to equation

Nug, 2
g1 1
=1+g -2~K,,4—~ZKP,H 1 {80)
Equating equations (80) and (75) one obtains
- 4K, (14 0),0/004) - 1 @1
2Kp.7. - KPr’H 1- KPrHif {2Kp).) )

In equation (81) the analytical solution for 8,, (see
equation {A20)) was used, which reads

8,, = —(PrH)' Py 124+ (PrHY*y/2

and results in 6,,,/65, = ~1/2. Assuming Kp. 5=
K,—K; to be small, equation (81) can be expanded

(32)

rH)

2K

This surprising result means for fluids with K, = X;
{Kp, g = 0) the reference temperature is the wall tem-
perature (J = 1, see equation (76)) and for fluids with
K, ~ K, it is close to the wall temperature.

Data for film boiling of water at atmospheric pres-
sure for example are: K, = 1.25, X, = 1.38 resulting
in T#=T}+083(T:-TH.

It should be pointed out that this reference tem-
perature only holds for the heat transfer results. One
has to deduce a different reference temperature if the
constant property ¢ result is used in the variable



2020

property case. This inherent feature of the reference
temperature method is clearly revealed by the asymp-
totic method.

2.5.2. Property ratio method. In this method the
constant property results are multiplied by a power
of some pertinent property (or properties) evaluated
at two different temperatures. The unknown power
(or powers) was (were) determined empirically in the
past. To the author’s knowledge this method has not
been applied to film boiling so far.

By means of the asymptotic theory the choice of
properties is obvious and the unknown power can be
deduced analytically.

The property ratio formula must be of the general

form
Nu = Nug, [gﬁ]ﬂ (83)
which asymptotically is
]s; 1; = 14¢K,.n,,+ 0 (). (84)

Comparing this equation with the variable property
result equation (75) gives for n,;

1

!
pAW

Ny =1+-2—=_ 85
PA BOW 2 ( )
resulting in the simple property ratio formula
Nu
= Ay
N, V(ph)., (86)

3. DISCUSSION

There are four important features of the asymptotic
approach to complex two-face flows that should be
emphasized.

(1) The typical advantage of a perturbation tech-
nique holds: the results are general in the sense that
a specification to certain flow cases is made in the
results only (by specifying ¢, £ and the fluid through
K, K5 K,,...).

(2) The influence of the physical properties can
be checked separately and a hierarchy of property
influences is established in terms of first-order and
higher order effects.

(3) The numerical solutions are more general and
easier to obtain compared to a non-asymptotic
approach. Only one solution parameter is left up to
first order. There is no need for iterative solution
procedures and the unknown interface position is
given explicitly.

(4) All information is extracted from the basic
equations. Based on these results well-known empiri-
cal methods to account for variable property effects
can be understood as theoretical methods (Section
2.5).

It should be pointed out that aside from the specific

H. HErwWIG

4 T T T
WATER AT 35bar
£=0.32
3k
- o
(") -
e ’
= //‘\usymptote
z - & large, (2]
1 —— s —
asymptote —
€0, this study
0 1 { }
0 0.4 02 , 03
€

Fi1G. 2. Subcooling influence, results and asymptote for large
£ from ref. [2].

numerical numbers provided by this theory a hier-
archy of influences and effects is established. One
example is the following.

Sparrow and Cess [2] investigated the influence of
subcooling on film boiling heat transfer. They showed
that for strong subcooling the heat transfer is
asymptotically equal to that for pure free convection
(Fig. 2). The asymptote for vanishing subcooling is
provided by equation (72) of this study

Nu(é) = Nu(0) + dé\;” £+ 0(E)

- Nu(0)+ EI%,,G’,; +O@). (87)

With 6; = 0 the asymptote for £ — 0 in Fig. 2 follows.
Asymptotically that means that subcooling is a higher
order effect.
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APPENDIX

A general set of equations that holds for all non-zero order
function§ (exceptions listed below) reads (i = 2, 3,41, 42, 4,
pu, pd, 4)

Exceptions (each line starts with the equation
replaced).

0(Ce)

(AS) = fimm+ 3+ e +12 =14
(A6) = f"thes + 367 nie) + e+ 2 = f1
(AT = fomm+fi =1
(A10) = Ootpz + 3059, + 011 + 0%
+3Pr H(f Y2+ 3 o +f e +/23 = 0.
0(C,Cr8)

(A7) =0 = fome +/s

fr =0 (Ala) 0@
Jr 43U f 1 —40fi =0 (Alb) (Ala) - [ +3f/4=210* =0
87 =0 (A2a) (A2a) - 04, + 3£, = 0.
87 43P f, 6 +/85) =0 (A2b)  O(K.®)
boundary conditions (Ala) = f —64 = 0.
n=0: fi=fi=6=0 A3 okK,8
interfacial conditi 1: o Sl o Ale) =S+ 00 =0.
O 10!
Fimetfi=Fi (AS) 2R " o
e +f1=0 (A6) (A28) = Bt (o0 =
0=/ A7) o(é m)
6,=0 @y _\
0=4, (A9 (AIb) = 7 +3L0 5 +75 74
Gotie; + 0,4 3Pr H(f e +1) = 0. (A10) —4f fy+(1~85) = 0.

ANALYSE ASYMPTOTIQUE DU FILM LAMINAIRE D’EBULLITION SUR DES PLANS
VERTICAUX EN INCLUANT LES EFFETS DE PROPRIETE VARIABLE

Résumé—L’ébullition avec film laminaire est étudiée pour démontrer les avantages de 'approche asympto-
tique pour des problémes complexes d'écoulement diphasique avec transfert de chaleur. En introduisant
deux paramétres de perturbation respectivement pour la surchauffe et le sous-refroidissement, on obtient
une solution réguliére de perturbation avec seulement denx paramétres. Le effets des propriétés variables
sont inclus asymptotiquement. Les solutions non asymptotiques sont bien moins générales car, méme pour
des propriétés constantes, c’est un probléme a six paramétres qui ne donne que des solutions spécifiques.

EINE ASYMPTOTISCHE BETRACHTUNG DES LAMINAREN FILMSIEDENS AN
SENKRECHTEN PLATTEN UNTER BERUCKSICHTIGUNG DES EINFLUSSES
VARIABER STOFFWERTE

Zusammenfassung—Am Beispiel des laminaren Filmsiedens sollen die Vorteile der asymptotischen Theorie
bei der Behandlung vergleichsweise komplexer Zweiphasen-Strémungen und Wirmeiibertragungsprobleme
demonstriert werden. Nach Einfiihrung von zwei Stérparametern zur Erfassung der Dampfiiberhitzung
bzw. Flussigkeitsunterkiihlung kann eine reguldre Stérungsrechnung durchgefiihrt werden, die zu einer
Lésung mit nur zwei Parametern fithrt. Die Effekte variabler Stoffwerte sind dabei in einem asymptotischen
Sinne beriicksichtigt. Nichtasymptotische Losungen sind sehr viel weniger aligemeingiiltig, da schon im
Falle konstanter Stoffwerte sechs Lésungsparameter auftreten, so daB nur spezielle Lsungen bestimmt
werden konnen.

ACUMITTOTHYECKUI AHAJIN3 JAMHWHAPHOIO IVIEHOYHOI'O KHITEHUS HA
BEPTUKAJIBHBIX ITJIACTHHAX C YYETOM ITEPEMEHHOCTH CBOUCTB

Ammoramms—Ha npEMeEpe H3yNeHHA NAMHHAPHOIO IJICHOYHOrO KHIICHMS TNOKa3aHBI MPEHMYINECTBA

aCHMITOTHYECKOrO METOAA pacHeTa CJOKHBIX 3aAad [Byx¢a3HOro Tewenus ¥ TemnoobMena, Mcnonsays

[1Ba AapaMeTpa BO3MYINEHHS IS ONMCAHHS Neperpesi H HEAOTPEBA, METOIOM BO3MYLICHHI NOMYIEHO

peuIeHre, cofepkaliee TOJILKO [Ipa MapaMerpa. ACHMITOTHIECKH YYHTRBAIOTCH 3(GQExTh nepeMen-

HOCTR cBoicT. HeacHMOTOTHYECKHE DEHICHHS ABJIMIOTCS ropasfno MeHee oOMMMH, Tak Kax Jake B

cly4ae NOCTOSHHBIX CBONMCTB I8 MONYYCHHS YACTHHIX pelIeHud HEOGXOMMMO YYHTHIBATE INECTh Hapa-
METPOB.

2021

to be

(AlD
(Al2)
(A13)

(Al4)

(A15)

(A16)
(A17)

(A18)

(A19)

(A20)

(A2D)



