
hf. J. Hear Mass Transfer. Vol. 31, No. IO, pp. 2013-2021, 1988 0017-931opa $3.00+0.00 
Printed in Great Britain 0 1988 Pergamon Press plc 

An asymptotic analysis of laminar film boiling on 
vertical plates including variable property effects 

H. HERWIG 
Institut fiir Thermo- und Fltiddynamik, Ruhr-Universitiit, Postfach 10 21 48, D-4630 Bochum 1, 

Federal Republic of Germany 

(Received 30 June 1987) 

Abstract-Laminar film boiling is studied as an example to demonstrate the advantages of the asymptotic 
approach to rather complex two-phase flow and heat transfer problems. Introducing two perturbation 
parameters for superheating and subcooling, respectively, a regular perturbation solution with only 
two solution parameters is derived. The effects of variable properties are included asymptotically. Non- 
asymptotic solutions are far less general since even for constant properties it is a six-parameter problem 

which allows for specific solutions only. 

1. INTRODUCTION 

ANALYTICAL studies of laminar film boiling date back 
to an early study by Bromley [l] in 1950. Assuming a 
linear temperature distribution in the vapour film this 
study was based on a modification of the Nusselt 
water-film theory. About 10 years later considerable 
improvement was achieved by introducing the concept 
of a two-phase boundary layer, see, e.g. studies by 
Sparrow and Cess [2], Nishikawa and Ito [3] and 
Frederking and Hopenfeld [4]. Though nearly all 
studies point out that the influence of variable proper- 
ties might be very important for that kind of flow 
only a few of them account for the temperature depen- 
dence of the physical properties involved. McFadden 
and Grosh [5] account for variable density and specific 
heat for a flow situation near the critical pressure. A 
study assuming all properties to vary with tem- 
perature (expressed by a power series representation) 
has been published by Marschall and Moresco [6]. 

In the present study larninar stable two-phase 
boundary layer flow on a vertical plate is investigated. 
The surface of the plate is heated above the saturation 
temperature of the surrounding liquid. In general the 
liquid is subcooled including the special limit of zero 
subcooling or saturation. 

In reality this flow situation holds close to the lead- 
ing edge of the plate. In regions further downstream 
where deformations of the interface by waves and 
instabilities arise, the present analysis may provide the 
basic flow for stability considerations. 

The objective of the present study is a more 
systematic approach to the problem. The application 
of a reguiar perturbation technique provides more 
general results as well as better physical insight into 
the problem. Based on this asymptotic approach the 
influence of the various temperature-dependent prop- 
erties is revealed clearly. In addition to this, well- 
known variable property concepts like the ‘reference 
temperature’-and ‘property.ratio’-method can be 
adopted to this flow situation. 

Compared to the treatment of a one-phase natural 
convection boundary layer, see, e.g. ref. [I, two 
additional complications arise. The interface location 
and conditions must be expressed asymptotically; 
and-as a consequence of this-a series expansion of 
the vapour boundary layer is required in addition to 
the expansion accounting for variable property 
effects. 

2. ANALYSIS 

The two-phase boundary layer flow, according to 
Fig. 1, is described by the following set of conservation 
equations. All starred quantities are dimensional, 
quantities in the liquid phase are marked with a cir- 
cumflex ‘> : 

continuity 

$ (p*u*) + $ (P*u’) = 0 (14 

VAPOUR 
LIQUID 

FIG. 1. Two-phase boundary layer. 
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NOMENCLATURE 

C density ratio, $z/p$ 

cP specific heat at constant pressure 

f dimensionless streamfunction 

9 acceleration of gravity 
Gr Grashof number 
h latent heat 
H latent heat, Table 2 

j reference temperature factor 

K, property of the fluid, equation (40) 
KA, kA constants, equations (29) 
ti mass flux 

% property ratio exponent 
NU Nusselt number 
Pr Prandtl number 

4 heat flux 
R Reynolds number 
T temperature 

u, 0 velocity components 
u reference velocity 

%Y coordinates. 

Greek symbols 
ci physical property 
& overheating parameter, equation (12a) 
E^ subcooling parameter, equation (12b) 

rl similarity variable 
0 dimensionless temperature 
1 thermal conductivity 

p viscosity 

P density 
7 shear stress 

II/ streamfunction. 

Subscripts 
t( associated with the property a(p, 7,. .) 

constant properties 
;: interface 
S saturation 
W wall 
cc infinity. 

&(B*ti*)+ $(fi*G*) = 0; (lb) T* = T,* 
(no temperature jump) 

(9) 

x-momentum 

P+*&+v*g) = &(F*g)+s’(p:-P’) 

(24 

(2b) 
thermal energy (viscous heating and axial conduction 
neglected) 

p*g(u*& +v*g) = $(l*g) (3a) 

b*~,‘(fi*$+fi*$) = &(L.$). (3b) 

The associated boundary conditions are 

y*=O: ~*=v*=T*-T;t=0 (4) 

y*-+ac: ~*=~*-ri~=O. (5) 

In addition to the five boundary conditions another 
six conditions hold at the (unknown) interface posi- 
tion y&, for details see, e.g. ref. [6] 

U* = ti* (no-slip velocity) (6) 

(balance of forces) (7) 

(mass conservation) (8) 

T* = T: (10) 

I* g = fi* $ - $ h* (energy conservation) 

(11) 

By equations (4)-(11) eleven conditions are provided, 
ten boundary conditions for equations (l)-(3) and 
one condition to determine y&. The interface is 
assumed to be at the saturation state determined by 
the saturation temperature T: at the total pressure p*. 

A regular two-parameter perturbation analysis is 
now applied to the system of equations (1 )-( 11). Since 
the two-phase flow under consideration is induced by 
overheating the fluid the rate of overheating is chosen 
as one perturbation parameter 

T;-T: 
E = __ (overheating parameter). (12a) 

T,* 

In addition there is a modification of the two-phase 
flow by the degree of subcooling, so that the second 
perturbation parameter is defined as 

E” = v (subcoolingparameter). (12b) 

The following asymptotic theory holds for E -+ 0, E^ -+ 0 
but it will turn out that reasonable approximations 
for finite E and E^ will be achieved even if only the 
first (linear) term of the asymptotic expansion is 
considered. A five-step procedure will be applied in 
Sections 2.1-2.5. For a general description of the five 
steps see, e.g. ref. [8] or ref. 191. 
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Table 1. Non-dimensional quantities 

u* $*R I/z T”-c a 
-2 

X* 
3 

$1’2 - - 
p:u*L* T;-T,* a, 

lG 
Y*-Y:Fojj,,2 f*-T,* di* 

L* Tz-T,* “; a, 

2.1. Non-dimensional basic equations, similarity trans- 
formation 

Since there is no characteristic geometrical length 
in the problem under consideration the flow exhibits 
self-similar behaviour. Equations (l)-(3) therefore 
can be transformed to a set of ordinary differential 
equations. 

(1) Nondimensioualization, using an arbitrary 
reference length I.*, reference velocities U* and 6*, 
and r: as reference temperature. All physical prop- 
erties are nondimensionalized by their values at T$. 
For details see Table 1. 

(2) Applying the following similarity trans- 
formations : (x, y) -+ (x,, q) and (x, 9) -+ (xs, 4) 

X, = x (13) 

WW 

,j = 2- l/Zx- l/4 ’ a 

s 
PW Wbl 

0 

(3) Introducing the streamfunctions cl/ and $ and 
their self-similar counterpart f and p 

ati a* 
dy=pu’ ~ - - -_Pu, 3, = 2J2~~/~E”f(tl) (1Sa) 

a$ atF ay=&i, ax-- - -j%, 6 = 2,/2~~‘~f(fi). (15b) 

Equations (13)-( 15) are those frequently used in two- 
phase self-similar flows, but with two additional 
features. In equations (14) a density weighted normal 
coordinate is introduced for convenience. In equa- 
tions (14a) and (Isa) the vapour quantities are 
stretched by a power of E. The mason for this 
additional transformation arises from the different 
structure of the buoyancy terms in the liquid and 
the vapour phases. The exponent PI will be evaluated 
by physical considerations. 

With the buoyancy terms named BT and BTL, 
respectively, equations (l)-(3) now read : 

x-momentum 

(p~lf”l’+s~“[3ff”-2f’2+~~ = 0 (16a) 

[~~~~‘~33~-2~~‘+BT~ = 0; (16b) 

thermal energy 

with the associated boundary conditions 

q=O: S=f’=e--l=o (18) 

$-+co: jir=&l =o (191 

and the conditions at the (unknown) interface posi- 
tion qlF listed at the end of this section. 

The buoyancy terms describing the driving mech- 
anism of the flow actually are the key to asymptotic 
formulation of the whole problem. They read with the 
driving density ratio C = fiZ/p: 

@W 
Since one is looking for an asymptotic solution for 
E --P 0, E^ --t 0, p and fl in equations (20) have been 
replaced by their Taylor series expansions at the 
reference temperature T,’ 

p = 1 +&fC,@+O(s2) (2la) 

$ = 1 +&Q+o(E^*) (21b) 

with the following definitions : 

These values are dimensionless fluid properties like 
the Prandtl numbers Pr and a. 

The constant property solution in the limit E + 0 is 
assumed to be the zero-order or basic solution for the 
perturbation approach. Compared to the single phase 
natural convection flow this is a completely different 
approach. For a single phase flow the zero-order solu- 
tion is a variable property solution already (known as 
the Boussinesq approximation, for details see ref. [7]). 
For two-phase flows a finite buoyancy term is left in 
the momentum equation of the vapour phase, see 
equation (Za), even in the limit of constant properties. 
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There is still the large difference in density between 
the vapour and liquid phases. 

From equation (20a) the reference velocity of the 
vapour phase is determined. In order to keep the 
buoyancy term in the zero-order equations, for U* to 
hold, see equation (16a) 

U*[g*L*(c- I)]- ‘I2 = 0(&n). (23) 

At this stage of the investigation it is not obvious what 
fixes the unknown exponent n. It turns out that 
this is done by the energy balance at the interface, 
equation (11). To zero order it reads (0, zero order; 
H = h*/c,*,Tf”) 

&, + 3Pr HfoE’“- ’ = 0. (24) 

Since both terms in equation (24) must be kept in the 
equation (the latent heat produced at the interface is 
balanced by the heat conduction to the vapour face) 
one obtains 

& 2nm’ = 1, n= l/2. (25) 

With n = l/2 the reference velocity of the vapour 

phase is (with a possible order one constant equal to 
one) 

u* = J(g*L*(c- 1)E). (26) 

Within the zero-order solution (constant properties) 

there are no free convection currents in the liquid. But 
nevertheless there is a liquid boundary layer since 
the no-slip condition provides a non-zero boundary 
condition to the otherwise homogeneous equation 
(2b) (note : 82 -p* = 0 in equation (2b) within zero 

order). As a consequence of this the reference velocity 
in the liquid phase must be of the same order of 

magnitude as U*. To avoid another O(1) constant, 
one sets 

@+ = lJ*. (27) 

Equations (16) with BT and BTL according to equa- 
tions (20)-(26) now read 

[p~~f”]‘+l+~[3~~“-~f“2-KAB]+O(~2) = 0 (28a) 

]fifi~~~]~+3~~~~-2~1’2+ Ell;(l_Q)+o c = 0 
0 

(28b) 

with 

In equation (28b) the buoyancy term of O(E^/.a) 
describes the free convection currents in the liquid 
which are one of several variable property effects. By 
assuming the constant property case for E -+ 0 to be 
the zero-order solution the free convection currents 
as a consequence of this assumption are the only jr.+ 
order effect in equation (28b). A necessary condition 
imposed by the zero-order assumption is O(E^) = 
O(.?) with m > 1. For m = 1 the free convec- 

tion currents would be a zero-order effect (which is 
discussed briefly later). Any number m > 1 is possible 
since E and E^ are not related to one another by a 
physical condition that would allow for one com- 
bination only. But nevertheless there is a first choice 

in = 2, O(i) = 0(&Z), a = PIE?. (30) 

Analysing the whole problem incorporating equations 
(30) allows for a minimum number of expansion terms 
as will be seen hereafter. Furthermore, the well-estab- 
lished hierarchy of variable property effects is pre- 
served (see, e.g. ref. [7]) : the (variable property) buoy- 
ancy term in equation (28b) is one order of magnitude 
larger than the effect of variable viscosity for example. 
An analysis based on equations (30) seems reasonable 
for practical purposes since in most applications 
E is much larger than E^ numerically. For example 
T$-T:= 100 K, Tf-Tz = 30 K and TJ*= 370 K 
results in E = 0.27, P = 0.08 with a2 = 0.073. 

The complete set of basic equations needed for a 
linear asymptotic analysis reads 

[Q&‘]‘+ 1 +s[3j~“-2f” -k:,O]+o(.a) = 0 (3la) 

j”f+3jj”-2f’2+ ;&(l-6)+0(&) = 0 (31b) 

[pM’]‘+ E 3Pr fe’ + O(E) = 0 (32a) 

f?+33PrfB^‘+o(E^/E) = 0 (32b) 

with boundary conditions (18) and (19). The symbol 

o(. .) means asymptotically smaller than the order 
indicated. 

It should be mentioned that a basically different 
approach is possible by assuming a zero-order 
solution that incorporates the liquid currents. 
This results in an analysis assuming c -+ 0, F^ --t 0. 
(Z/E) E P , = 0( 1). The appropriate reference velocity 
in the liquid would be i?* = J(g*L*k$) and all 
terms of O(g) in equations (31 b) and (32b) would turn 
out to be first-order terms. In terms of this approach 
the present analysis is that for P, -+ 0 with P, = 0 (c). 

The interfacial conditions, equations (6))(1 I), read 
(constants listed in Table 2) 

f’ = ,p, (33) 

,f” = fUQ’” 
(34) 

C,cl:?j.=,j. (35) 

o=o (36) 

o=u^ (37) 

Table 2. Constants 
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A 

w-i-3PrJH= &C,s”$. (38) 

2.2. Perturbation expansions for al~~pend~t oariab~es 
and the interface location 

It is the aim of this study to find a solution that 
includes all effects of O(E) and 0(&r) in a way that is 
as general as possible. The first step to accomplish this 
is a Taylor series expansion of all properties involved. 
These are do = pp, pR (note that cP is multiplied by 8 
in equation (17a) and no longer appears in equation 
(32a)) at the vapour side 

with 

c1= 1 +&K,o+O(&*) (39) 

The influences of all corresponding properties oi at the 
liquid side are of O(g) = 0(a2) neglected in this study 
as higher order terms. Altogether there are three 
sources of non-zero order terms that should be 
accounted for in a general perturbation formula : 

(a) terms induced by powers of the perturbation 
parameters in the equations or boundary conditions 
that hold even for constant property flows (all values 
of K equal to zero) ; these are terms of O(s “3 and 

O(a) ; 
(b) terms accounting for variable property effects 

in the vapour layer; these are terms of 0(&s) and 

0 (&a) ; 
(c) terms accounting for variable property effects in 

the liquid layer ; this is only one term of O&E/s). 

Accordingly the perturbation expansions for f and f 
read with the constants C,, Cz and the values of K 
arranged properly in order to minimize the parameters 
of the final equations 

f=fo+~“2C,f,+~IC:f2+~I~2f3+f41+~~f~Zl 1 +E K&+cK& 
[ a 1 f ~&~,-+O(E~‘~) (41) 

3=30+e”~c ,3, f4C~32+fC1G33+341 +Prfd 

+E 
I 

KA;r, +c Kzj_ + ;iE,f2 -!-O(E~~‘). 
D! I 

(42) 

Similar expansions hold for the temperatures 

0 = eo+E”2C,B,+E[C:e2+C,C2e3+84,+Prer(2] A +E 
[ 

K.&j, -f-~&0, 
* 1 + ; &Oa +O(E~~‘) (43) 

~=~*++E~‘~C,tS,+EfC:~~+C~Cz~~+~~,+Pr~~,,~ 

+e 
[ 

K,dA i-cK& 
OL 1 + ;Z&& +O(e3j2). (44) 

The location of the interface rffF and IjIF, respectively, 

is not known in advance. It is part of the solution and 
it is subject to the influence of non-zero order terms 
like ail other quantities. Therefore a similar expansion 
holds for qiF 

%F = ?IFO f & ‘%t%F, +dC:tl,F2 + cI cZ%F3 + ‘IIF 

The relation between qIF and 7j,r is (C, according to 
Table 2) 

%F = & “‘c,(rlrF-~IFO)+Ot&3’2). W) 

2.3. Zero- andjrst-order equations and their solutions 
Inserting equations (39) and (41)-(44) into the basic 

equations, equations (31) and (32), and equating 
terms of equal magnitude C&i = 1,2,. . . ; j = 0, 
l/2,1,. . .) results in a hierarchy of sets of ordinary 
~erential equations. The corresponding bounds 
conditions are easily derived from equations (18) 
and (19). 

Special attention has to be given to the interfacial 
conditions, equations (33)-(38). A Taylor series 
expansion at the zero-order location is required to 
derive the higher order interfaciaf conditions. The 
first condition, equation (33), for example reads 
asymptotically (not al1 terms written down explicitly) 

f6(?o)+f’~(qo)(&“2CItllFl +W:VIFZ+* ’ .I> 

~ss~~tlo~~~~:~:~,+~~~)+~“‘~,If;~rlo~ 

+~(~~)~~1~2c,~~~~ f * * -)I+4 f .I 

=P6Ctio)+~(~O){&C*CZrIF* +.--I 

-td*c,3; +E[. . .I. 
The overall procedure results in the following equa- 
tions, boundary conditions and interfacial conditions, 
respectively. 

2.3.1. Zero order ; basic solution. 

f{+l =o 

jb’“+3jb&-z.~” = 0 

sg = 0 

t?~+3Pr3o&o = 0 

boundary conditions 

q==o: fo=&5&-l=O 

3+co: “Pa=@,-l=O; 

interfacial conditions 

fb =.I-; 

f’; = 0 

o=.to 

(474 

WW 

@a) 

(4W 

(49) 

(50) 

(51) 

(52) 

(53) 
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00 =o 

0 = e, 
O;+3PrHfo = 0. 

2.3.2. O(C,&‘!‘). 

f’;” = 0 

H^: + 3a[f$; +j;&] = 0 

boundary conditions 

q=o: ,f, =J”, =u, =o 

4 --f co: .f; = 0, = 0; 

interfacial conditions (at q = q,& 

fS?,F, +J“, = .P’, 

.X%PI +f“; = .f;; 

fo =P, 

@,=O 

o=e, 

(54) 

(55) 

(56) 

(5W 

(57b) 

(5W 

(58b) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

It turns out that most of the non-zero order equations 
and their boundary and interfacial conditions are of 
a similar type which also holds for equations (57) 
(66) above. In the Appendix all equations are listed 
by means of a general set of equations and the cor- 
responding exceptions. 

Altogether there are 11 sets of equations (four 

differential equations per set) with 11 boundary and 
interfacial conditions per set. The whole system has 
two parameters left (with only the first one being 
relevant as will be demonstrated afterwards) 

Pr H 

Pr. 

It should be pointed out that the system treated in a 
non-asymptotic manner has six parameters even 
in the special case of constant properties, see, e.g. 

ref. [3]. 
The zero-order vapour equations can be solved 

analytically since interfacial conditions (51)-(56) let 
them be decoupled from the liquid phase. The SOILI- 
tions are 

Jo = - $I’+ :r?,&? (67) 

0, = 1 -f?/yIml (68) 

with the zero-order interface position given by 

ail,, = (Pr H)- ‘,‘4. (69) 

By means of equation (68) the zero-order heat 
transfer result can be given analytically as will be 
demonstrated in the next section. 

The velocity and temperature distributions, equa- 

tions (67) and (68), are those of the early theory of 

Table 3. Numerical results. All quantities O:,, f:,_ and nrr., 
not included in this table are zero 

Pr fi 

-1.0 - 1.495349 - 1.778278 
-0.1 -0.029907 -0.017783 

0.5 0.747674 0.889138 

I.0 0.668740 0.562341 
-0.272407 -0.081624 -0.048676 

0.166731 0.022397 0.009476 
-0.091665 -0.012260 --0.005155 
-0.091667 -0.012260 -0.005155 
-0.375 -0.250778 -0.210878 
-0.75 -0.501555 -0.421756 

0.16667 0.111457 0.093723 

1.0 0.668740 0.562341 
0.272407 0.081624 0.048676 

-0.018319 -0.002471 -0.001051 
0.075003 0.010032 0.004218 

-0.091667 -0.012260 -~0.005155 
0.125 0.083593 0.070293 
0.25 0.167185 0.140585 
0.16667 0.111457 0.093723 

5 IO 

Nusselt [IO] for water films which thus turn out to be 
the leading terms of an asymptotic theory. 

All non-zero equations have to be solved numeri- 
cally. Within each order (c’l*C,, EC:, .) the vapour 
and liquid equations are coupled by the unknown 
interface parameter r~,~~. This unknown parameter as 
well as all initially unknown wall boundary conditions 
needed for a numerical integration (Runge-Kutta) of 
the equations are determined by a standard ‘shooting 
method’. 

Beforehand a careful inspection of all equations 
and boundary conditions reveals the following points. 

(1) That a considerable number of equations have 
the trivial solution only. That they hold for all vapour 
equations of 0(&C:), O(EK,) and 0(&a) and all 
vapour energy equations except O(l), O(E Pr) and 

0 (s&J. 
(2) That the liquid Prandtl number Br does not 

affect the wall values of zero and first order, so that 
the whole problem is left as a one-parameter problem 
within the linear theory of this study. 

This one and only parameter is Pr H. In Table 3 
the numerical results are displayed for three different 
values of this parameter. Three quantities are given : 
e:,, .f’::, and VIFt. 

2.4. Skin friction and heat transj& results 
The momentum transfer results in terms of the skin 

friction cr = 2tz/p: V2 are 
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with Grashof number 

* *3 

GdC=+- E(C- 1). (71) 

The beat transfer results in terms of the I+&tsselt 
number 

are 

with the zero-order result 

Nl~a”~ = 2-‘i2 Gr’i4x- */4(p~~)i/4. (73) 

From equations (70) and (72) corre&n formulae 
to account for the influence of variable properties 
can be derived. With the constant property case 
characterized by Ki = O(i = pi, pl, A) and 
fb = e;, = eiNw = t?& = 0 the fo~owi~~ ratios hold 
asymptotically : 

(74) 

(75) 

It should be pointed out that the zero-order solution 
is the constant property case in the limit of vanishing 
heat transfer (8 -+ 0). That is why ratios like cr/crO 
(instead of Q/C,,) would have terms of O(E”*). 

In the beat transfer literature there are two empiri- 
cal methods to account for variable property effects : 
the reference temperature and the property ratio 
method. The empirical constants in both methods can 
be deduced analytically by the asymptotic approach 
of this study. 

2.5.1, Rejkrence temperature method. Id this method 
a temperature T, (reference temperature) is specified 
at which the properties appearing in the dimensionless 
groups of the problem should be evaluated to get the 
variable property results by constant property for- 
mulae. Defining 

Tf= T$i-j(T$-T,*) (W 

it is the factor j that has to be determined. The starting 

point is the constant property formula which for the 
heat transfer reads (see equation (72) and Table 3) 

Nu, = -(&)- ‘12x- ‘I4 Or; “4[6#+H~) 

+e~r~~~~(~r~*~~~ = Nra(Gr,, Pr H,, PrJ. (77) 

The index %’ means all properties in the dimensionless 
groups are evaluated at T* = T$ The same. formula 
with all properties at T* = T: describes the variable 
property Mzsselt nomber Nat, so that the ratio h%/N+ 
reads 

NU 
Nu,= 

= 

with 

and KpIs = K,- IQ, Kp, K,,, K>. according to equation 

(40). 
Inserting 8, according to equations (68) and 

(69) into equation (79) one obtains F(Pr H) = l/4 = 
const. which leads to the final result 

Equating equations (80) and (75) one obtains 

In equation (81) the analytical solution for 0,, (see 
equation (A20)) was used, which reads 

e pl = -(PrH)L~Z~Z~2+fP~H)1~4~f2 

and results in e~~~/e~~ = - l/2. Ass~ng K,, E 
KR- K, to be small, equation (8 1) can be expanded 

tw 

This surprising result means for fluids with I$, = & 

(Lf = 0) the reference ~m~rature is the wall tem- 
perature (J’ = 1, see equation (76)) and for fluids with 
K,, w Kl it is close to the wall temperature. 

Data for film boiling of water at atmospheric pres- 
sure for example are : lu, = 1.25, lu, = 1.38 resulting 
in T,+= T~+O.83(~~-~~. 

It should be pointed out that this reference. tem- 
perature only holds for the heat transfer results. One 
has to deduce a different reference temperature if the 
constant property cF result is used in the variable 
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property case. This inherent feature of the reference 
temperature method is clearly revealed by the asymp- 
totic method. 

2.5.2. Property ratio method. In this method the 
constant property results are multiplied by a power 
of some pertinent property (or properties) evaluated 
at two different temperatures. The unknown power 
(or powers) was (were) determined empirically in the 
past. To the author’s knowledge this method has not 
been applied to film boiling so far. 

By means of the asymptotic theory the choice of 
properties is obvious and the unknown power can be 
deduced analytically. 

The property ratio formula must be of the general 
form 

which asymptotically is 

NU 
__ = 1 +&K&,+O(EZ). 
N&p 

(83) 

Comparing this equation with the variable property 
result equation (75) gives for nPl 

%A 
;iw = I+$=; (85) 
ow 

resulting in the simple property ratio formula 

E = J(P%v. 

3. DISCUSSION 

There are four important features of the asymptotic 
approach to complex two-face flows that should be 
emphasized. 

(1) The typical advantage of a perturbation tech- 
nique holds : the results are general in the sense that 
a specification to certain flow cases is made in the 
results only (by specifying a, 6 and the fluid through 

KP> K,, K,, . . .I. 
(2) The influence of the physical properties can 

be checked separately and a hierarchy of property 
influences is established in terms of first-order and 
higher order effects. 

(3) The numerical solutions are more general and 
easier to obtain compared to a non-asymptotic 
approach. Only one solution parameter is left up to 
first order. There is no need for iterative solution 
procedures and the unknown interface position is 
given explicitly. 

(4) All information is extracted from the basic 
equations. Based on these results well-known empiri- 
cal methods to account for variable property effects 
can be understood as theoretical methods (Section 
2.5). 

It should be pointed out that aside from the specific 
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FIG. 2. Subcooling influence, results and asymptote for large 
d from ref. [2]. 

numerical numbers provided by this theory a hier- 
archy of influences and effects is established. One 
example is the following. 

Sparrow and Cess [2] investigated the influence of 
subcooling on film boiling heat transfer. They showed 
that for strong subcooling the heat transfer is 
asymptotically equal to that for pure free convection 
(Fig. 2). The asymptote for vanishing subcooling is 
provided by equation (72) of this study 

Nu(E^) = Nu(0) + %2+ O(E^‘) 

= Nu(0) + i&f?> + O(E^‘). (87) 

With e> = 0 the asymptote for C: + 0 in Fig. 2 follows. 
Asymptotically that means that subcooling is a higher 
order effect. 
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APPENDIX 

A general set of equations that holds for ail non-zero order 
functions (exceptions listed below) reads (i = Z&3,41,42, A, 

P/J, PJ., A) 

f;” = 0 (Ala) 

fi+3[.&j?+$_&-4f63$ = 0 (Alb) 
@!’ = 0 

8: +- 3&[j0 & +A&] = 0 

tA2a) 

(A2b) 

boundary conditions 

q=O: f;=f,‘=e,_=o (A3) 

Ij-.+cx): fi=e,=o; (A4) 

interfacial con~tions 

f$?IFi.iff = 3: (A5) 

f:qm+f:= 0 (‘46) 
o=J (A7) 

e, = 0 (A8) 

0 = i4( (As) 

i?;g,, f@~+3PrHUhi+A) = 0. (A101 

&‘I -, 0 = h,~, +I;. 

(Ala) +&“+3fof’;-2f62 = 0 
‘ (AZa) -+ f3!!, + 3&e, = 0. 

(Ala) -fF-0, = 0. 

(Ala) -~~~+Cf{@,)’ = 0. 

(A2a) + eil + (e,egy = 0. 

(A151 

(Al6) 

(A17) 

(A18) 

(A19) 

WV 

0 fit4 ( > 
(Alb) j~+3~~+~~~1 

-4&&l-{l-&J = 0. (A21) 

ANALYSE ASYMPTOTIQUE DU FILM LAMINAIRE D’EBULLITION SUR DES PLANS 
VERTICAUX EN INCLUANT LES EFFETS DE PROPRIETE VARIABLE 

R~~~~b~tion avec tihn Iaminaire est Ctudiee pour demontrer les avantages de l’approche asympto- 
tique pour des problemes complexes d’ecoulement diphasique avec transfert de chaleur. En introduisant 
deux parametres de perturbation respectivement pour la surchautTe et le sous-refroidissement, on obtient 
une solution r&ulibre de perturbation avec seulement deux parametres. Le effets des prop&es variables 
sont inclus asymptotiquement. Les solutions non asymptotiques sont bien moins genbrales car, mgme pour 
des prop&es constantes, c’est un probleme a six paramltres qui ne donne que des solutions specifiques. 

EINE ASYM~OTISCHE BET~CHTUNG DES LAMINAREN ~LMSIEDENS AN 
SENKRECHTEN PLATTEN UNTER BERUCKSICHTIGUNG DES EINFLUSSES 

VARIABER STOFFWERTE 

Znsammenfassuog--Am Beispiel des laminaren Film&dens sollen die Vorteile der asymptotischen Theorie 
hei der Behandlung vergleichsweise komplexer Zweiphasen-Stramungen und W&meiihertragungsprobleme 
demonstriert werden. Nach Einf%hrung von zwei Stiirparametem zur Erfassung der Dampfiiberhitzung 
bzw. ~~sigkeits~terk~ung kann eine regullre St6~gsr~~ung d~hge~t werden, die ZII einer 
Liisung mit nur zwei Parametem f&t. Die EfYekte variabler Stoffwerte sind dab& in einem ~~ptotischen 
Sinne beriicksichtigt. Nichtasymptotische Lijsungen sind sehr vie1 weniger allgemeingiiltig, da schon im 
Falle konstanter Stoffwerte sechs Ldsungsparameter auftreten, so da0 nur spezielle Liisungen bestimmt 

werden kannen. 

ACHMIITOTHYECKM~ AHAJIH3 JTAMEIHAPHOTO IIJIEHO~OTO KHIIEHHX HA 
BE~K~bHbIX ~~ACT~H~ C y4IETOM HEPEMEHH~ CBOaflB 

AmooTasws+Ha nprrMepe myqemra nakmrraprroro mrenomroro mmerrms noxaaamr npe~ecraa 
acmfrrroru~eenoro Mmona pacnera cJIoxmbrx aanan einyxtpaarroro reserimr n rermoo6hieHa. Hcnonbaya 
naa napaMerpa eo3hiymemm n.na omrcamrn neperpeaa n nenorpeea, MerozroM eo3iuyrqem& nonyneno 
pemerme, conepramee ronnxo nna napaMerpa. Acmmro?~9ecrra -TCa %#Npexrht neper+ferr- 
HOCTR CBOfiCrB. Heacmfrrrormmorme ~nb%LEil aaJrarorCa rOpa3AO MeHcC o6mnMn, Tax XBI J&?Ce B 
enyrae nocrommbrx CBO%crB Lurn 00JryneffiIs ¶acrnbrx pemeriri% 1reo6xo~xx~o y%rr&marh mecrb napa- 


